Orthogonal Left Derivations of Semi-Prime Rings

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Left Annihilator of Identities Involving Generalized Derivations in Prime Rings

Let $R$ be a prime ring with its Utumi ring of quotients $U$,  $C=Z(U)$ the extended centroid of $R$, $L$ a non-central Lie ideal of $R$ and $0neq a in R$. If $R$ admits a generalized derivation $F$ such that $a(F(u^2)pm F(u)^{2})=0$ for all $u in L$, then one of the following holds: begin{enumerate} item there exists $b in U$ such that $F(x)=bx$ for all $x in R$, with $ab=0$; item $F(x)=...

متن کامل

Generalized Derivations of Prime Rings

Let R be an associative prime ring, U a Lie ideal such that u2 ∈ U for all u ∈ U . An additive function F : R→ R is called a generalized derivation if there exists a derivation d : R→ R such that F(xy)= F(x)y + xd(y) holds for all x, y ∈ R. In this paper, we prove that d = 0 or U ⊆ Z(R) if any one of the following conditions holds: (1) d(x) ◦F(y)= 0, (2) [d(x),F(y) = 0], (3) either d(x) ◦ F(y) ...

متن کامل

Centralizing automorphisms and Jordan left derivations on σ-prime rings

Let R be a 2-torsion free σ-prime ring. It is shown here that if U 6⊂ Z(R) is a σ-Lie ideal of R and a, b in R such that aUb = σ(a)Ub = 0, then either a = 0 or b = 0. This result is then applied to study the relationship between the structure of R and certain automorphisms on R. To end this paper, we describe additive maps d : R −→ R such that d(u) = 2ud(u) where u ∈ U, a nonzero σ-square close...

متن کامل

Two Torsion Free Prime Gamma Rings With Jordan Left Derivations

Let M be a 2-torsion free prime Γ-ring and X a nonzero faithful and prime ΓM -module. Then the existence of a nonzero Jordan left derivation d : M → X satisfying some appropriate conditions implies M is commutative. M is also commutative in the case that d : M → M is a derivation along with some suitable assumptions. AMS (MOS) Subject Classification Codes: 03E72, 54A40, 54B15

متن کامل

On Jordan left derivations and generalized Jordan left derivations of matrix rings

Abstract. Let R be a 2-torsion free ring with identity. In this paper, first we prove that any Jordan left derivation (hence, any left derivation) on the full matrix ringMn(R) (n 2) is identically zero, and any generalized left derivation on this ring is a right centralizer. Next, we show that if R is also a prime ring and n 1, then any Jordan left derivation on the ring Tn(R) of all n×n uppe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Generalized Lie Theory and Applications

سال: 2017

ISSN: 1736-4337

DOI: 10.4172/1736-4337.1000270